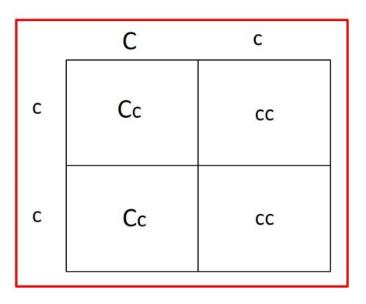
Mendelian Genetics Answer Guide



Exercise 1: Monohybrid Cross

Table 1: Millet Seed Genotypes and Phenotypes

	Genotype	Phenotype
Homozygous Dominant	CC	Smooth coat
Heterozygous	Сс	Smooth coat
Homozygous recessive	Сс	Wrinkled coat

Photo 1: Cross Producing Seeds in Kit (Cc x cc)

Data Table 2: Expected Ratios

Phenotypic Ratio	1:1
Genotypic Ratio	1:1
Offspring expected to be smooth (%)	50
Offspring expected to be wrinkled (%)	50

Table 3: Millet Seed Data

	Round Seeds	Wrinkled Seeds	Total
Observed number of individuals	604	378	982
Expected number of individuals	491	491	982

Panel 1: Chi-square Calculation for Millet Seeds

Student answers should use values from Data Table 3.

$$x^2 = \frac{(604 - 491)^2}{491} + \frac{(378 - 491)^2}{491} = 52$$

Table 4: Millet Seed Chi-square Test

Degrees of Freedom	1
p-Value range	<0.005
Conclusion	Difference between expected and observed is statistically significant

Question 1

Explain the difference between the terms genotype and phenotype.

Genotype refers to the genetic makeup of an organism, whereas phenotype refers to the observable characteristics of an organism. The genotype determines the phenotype of an individual.

Question 2

The seeds in this exercise were produced by a heterozygous parent and homozygous recessive parent as described in step 4. List all possible crosses that could have produced the homozygous recessive parent (cc).

The homozygous recessive parent could have been produced by the following crosses: $cc \times cc$, cc, and cc cc.

Question 3

Was the Punnett square created in this exercise a good predictor of offspring phenotypes resulting from a cross between a homozygous recessive wrinkled-seed-producing millet plant and a heterozygous smooth-seed-producing millet plant? Reference Photo 1 and the results recorded in Data Table 4 in your explanation.

Note to instructors: seeds are packaged by mass and not by percentages. For this reason, student results and answers will vary. All answers should be supported by **Data Table 4**.

No, the Punnett square in Photo 1 predicted that 50% of the offspring would be smooth and 50% of the offspring would be wrinkled. However, significantly more smooth seeds were present in the sample (604) than were wrinkled seeds (398). The difference was statistically significant producing a p-value <.005 as recorded in Data Table 4.

Exercise 2: Dihybrid Crosses

Data Table 5: Description of Corn Offspring

Phenotypic Ratio	9:3:3:1
Genotypic Ratio	4:2:2:2:1:1:1:1
Offspring expected to be purple-smooth (%)	56.25%
Offspring expected to be purple-wrinkled (%)	18.75%
Offspring expected to be yellow-smooth (%)	18.75%
Offspring expected to be yellow-wrinkled (%)	6.25%

Table 6: Kernel Phenotypes and Genotypes

Phenotype	Possible Genotype(s)	# of Possible Genotypes
Purple-smooth	PPSS, PPSs, PpSS, PpSs	4
Yellow-smooth	ppSS, pp,Ss	2
Purple-wrinkled	PPss, Ppss	2
Yellow-wrinkled	ppss	1

Table 7: Genotypes of True-Breeding Corn

True-Breeding Phenotype	Genotype	# of Possible Genotypes
Corn that produces only purple-smooth kernels	PPSS	1
Corn that produces only yellow-smooth kernels	ppSS	1
Corn that produces only purple-wrinkled kernels	PPss	1
Corn that produces only yellow-wrinkled kernels	ppss	1

Table 8: Allelic Combinations for Axes

Genotype	Genotype
Parent: PpSs	Combination 1: PS
	Combination 2: Ps
	Combination 3: pS
	Combination 4: ps

Photo 2: Cross of Heterozygous Corn (PpSs x PpSs)

			Pare	Parent 1		
F ₂ Generation		_PS_	_Ps_	_p\$_	_ps_	
	PS	PPSS Purple-smooth	PPSs Purple-smooth	PpSS Purple-smooth	PpSs Purple-smooth	
Parent 2	_Ps_	PPSs Purple-smooth	PPss Purple- wrinkled	PpSs Purple-smooth	Ppss Purple-wrinkled	
Pare	_ps_	PpSS Purple-smooth	PpSs Purple-smooth	pp\$\$ Yellow-smooth	ppSs Yellow-smooth	
	ps	PpSs Purple-smooth	Ppss Purple- wrinkled	ppSs Yellow-smooth	ppss Yellow-wrinkled	
			Student Na	ame		

Table 3: Dialysis Membrane and Glucose

Substance	Glucose (Y/N)
Solution outside of dialysis tubing (cup 1)	Υ
Solution in dialysis tubing (cup 2)	Υ
Distilled water	N

Data Table 9: Description of Corn Offspring

Phenotypic Ratio	9:3:3:1
Genotypic Ratio	4:2:2:2:1:1:1:1
Offspring expected to be purple-smooth (%)	56.25%
Offspring expected to be purple-wrinkled (%)	18.75%
Offspring expected to be yellow-smooth (%)	18.75%
Offspring expected to be yellow-wrinkled (%)	6.25%

Data Table 10: Description of Corn Offspring

	Purple- smooth	Purple- wrinkled	Yellow- smooth	Yellow- wrinkled	Total # of offspring
Expected # of	278	92	92	31	493
Individuals					

	Purple- smooth	Purple- wrinkled	Yellow- smooth	Yellow- wrinkled	Total # of offspring
Section A (observed)	53	27	17	3	100
Section B (observed)	93	21	25	12	151
Section C (observed)	89	17	32	8	146
Section D (observed)	62	21	11	2	96
Observed Number of Offspring (A + B + C + D)	297	86	85	24	493

Panel 2: Chi square Calculation for Corn Offspring

$$x^2 = \frac{(297 - 278)^2}{278} + \frac{(86 - 92)^2}{92} + \frac{(85 - 92)^2}{92} + \frac{(25 - 31)^2}{31} = 3.38$$

Table 11: Corn Chi-square Test

Degrees of	2
Freedom	3
p-Value range	0.500-0.050
	p = 0.500 - 0.050 therefore p > 0.05. There is
Conclusion	not a statistically significant difference between
	the expected and observed values.

Question 1

Was the Punnett square created in this exercise a good predictor of offspring phenotypes resulting from a dihybrid cross of heterozygous parents? Reference Photo 2 and Data Table 11 in your explanation.

Yes, the Punnett square in Photo 2 predicted a phenotypic ratio of 50%, 19%, 19%, and 6% for purple-smooth, purple-wrinkled, yellow-smooth, and yellow-wrinkled, respectively. The numbers of each phenotype in the sample were 297, 86, 85, and 25. The difference between the expected numbers and observed numbers of the phenotypes was not statistically significant producing a p-value range 0.500-0.050 as recorded in Data Table 11.

Question 2

Would a cross between a homozygous purple-smooth parent (PPSS) and a parent that is heterozygous for both traits (PpSs) result in offspring that produced either yellow or wrinkled seeds? Explain your answer by listing the genotypes and phenotypes produced by the cross.

No, all offspring would produce purple, smooth seeds. The genotypes of the offspring would be: PPSS, PpSS, PPSs, and PpSs. An offspring would need to be homozygous recessive for either of the traits to produce yellow or wrinkled seeds.

Extension Question

A plant collector locates a wild population of lilies composed of 75% spotted flowers and 25% solid colored flowers. The collector selects seeds from several of the spotted individuals and plants the seeds in their garden. The collector is surprised that 25% of the resulting lilies produced solid colored flowers. Apply your knowledge of Mendelian genetics to explain why the collector did not produce only spotted flowering plants in their garden.

The sampled population exhibited a 3:1 phenotypic ratio of spotted flower plants to solid colored flower plants suggesting that the genotypic ratio of the population was 1:2:1 for the flower color allele, with the solid color being recessive. By selecting seeds from only a few plants, the collector was likely selecting seeds from the heterozygous plants. When planted in the collector's garden, these seeds would result in plants with a 3:1 phenotypic ratio of spotted flowers to solid flowers.